- Difficulty: Hard
- Tags: LeetCode, Hard, Bit Manipulation, Array, Dynamic Programming, Backtracking, Bitmask, leetcode-1655, O(n + m * 3^m), O(n + 2^m), Submask Enumeration
Problem
You are given an array of n
integers, nums
, where there are at most 50
unique values in the array. You are also given an array of m
customer order quantities, quantity
, where quantity[i]
is the amount of integers the ith
customer ordered. Determine if it is possible to distribute nums
such that:
- The
ith
customer gets exactlyquantity[i]
integers, - The integers the
ith
customer gets are all equal, and - Every customer is satisfied.
Return true
if it is possible to distribute nums
according to the above conditions.
Example 1:
Input: nums = [1,2,3,4], quantity = [2] Output: false Explanation: The 0th customer cannot be given two different integers.
Example 2:
Input: nums = [1,2,3,3], quantity = [2] Output: true Explanation: The 0th customer is given [3,3]. The integers [1,2] are not used.
Example 3:
Input: nums = [1,1,2,2], quantity = [2,2] Output: true Explanation: The 0th customer is given [1,1], and the 1st customer is given [2,2].
Constraints:
n == nums.length
1 <= n <= 105
1 <= nums[i] <= 1000
m == quantity.length
1 <= m <= 10
1 <= quantity[i] <= 105
- There are at most
50
unique values innums
.