- Difficulty: Hard
- Tags: LeetCode, Hard, Bit Manipulation, Array, Dynamic Programming, Bitmask, leetcode-1879, Graph, O(n^3), O(n^2), DP, Hungarian Weighted Bipartite Matching
Problem
You are given two integer arrays nums1 and nums2 of length n.
The XOR sum of the two integer arrays is (nums1[0] XOR nums2[0]) + (nums1[1] XOR nums2[1]) + ... + (nums1[n - 1] XOR nums2[n - 1]) (0-indexed).
- For example, the XOR sum of
[1,2,3]and[3,2,1]is equal to(1 XOR 3) + (2 XOR 2) + (3 XOR 1) = 2 + 0 + 2 = 4.
Rearrange the elements of nums2 such that the resulting XOR sum is minimized.
Return the XOR sum after the rearrangement.
Example 1:
Input: nums1 = [1,2], nums2 = [2,3] Output: 2 Explanation: Rearrangenums2so that it becomes[3,2]. The XOR sum is (1 XOR 3) + (2 XOR 2) = 2 + 0 = 2.
Example 2:
Input: nums1 = [1,0,3], nums2 = [5,3,4] Output: 8 Explanation: Rearrangenums2so that it becomes[5,4,3]. The XOR sum is (1 XOR 5) + (0 XOR 4) + (3 XOR 3) = 4 + 4 + 0 = 8.
Constraints:
n == nums1.lengthn == nums2.length1 <= n <= 140 <= nums1[i], nums2[i] <= 107