- Difficulty: Hard
- Tags: LeetCode, Hard, Greedy, Array, Sorting, Heap (Priority Queue), leetcode-2551, O(n) on average, O(1), Quick Select
Problem
You have k bags. You are given a 0-indexed integer array weights where weights[i] is the weight of the ith marble. You are also given the integer k.
Divide the marbles into the k bags according to the following rules:
- No bag is empty.
- If the ithmarble andjthmarble are in a bag, then all marbles with an index between theithandjthindices should also be in that same bag.
- If a bag consists of all the marbles with an index from itojinclusively, then the cost of the bag isweights[i] + weights[j].
The score after distributing the marbles is the sum of the costs of all the k bags.
Return the difference between the maximum and minimum scores among marble distributions.
Example 1:
Input: weights = [1,3,5,1], k = 2 Output: 4 Explanation: The distribution [1],[3,5,1] results in the minimal score of (1+1) + (3+1) = 6. The distribution [1,3],[5,1], results in the maximal score of (1+3) + (5+1) = 10. Thus, we return their difference 10 - 6 = 4.
Example 2:
Input: weights = [1, 3], k = 2 Output: 0 Explanation: The only distribution possible is [1],[3]. Since both the maximal and minimal score are the same, we return 0.
Constraints:
- 1 <= k <= weights.length <= 105
- 1 <= weights[i] <= 109